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LETTER TO THE EDITOR

The problem of uniqueness in the reduced description of
adsorption on the wedge-shaped substrate

A Bednorz and M Napiórkowski
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoża 69, 00-681 Warszawa, Poland

Received 22 June 2000

Abstract. In the reduced one-dimensional description of the adsorption on the wedge-shaped
substrate the mid-point interface height serves as the order parameter. We point out the ambiguity
which appears in the transfer-matrix approach to this problem. We also propose how to avoid this
problem by introducing the appropriate order parameter.

1. Introduction

One of the possible scenarios of adsorption on the wedge-shaped substrate (see figure 1) is via
the so-called critical filling transition [1–6]. In this transition the central part of the interface
(separating the phases β and α) positioned above the edge of the wedge is shifted continuously
to infinity while those parts of the interface corresponding to |x| → ∞ remain pinned to the
substrate. The filling transition takes place at the temperature Tϕ , which depends on the wedge
opening angle 2ϕ and which is smaller than the wetting temperature Tw on the planar substrate.

The critical filling transition was analysed recently [7] via the transfer-matrix approach.
Due to the strong anisotropy of the interfacial fluctuations the order parameter corresponding to
the height of the interface �(x, y) above the substrate z = |x| cot ϕ can be effectively replaced
by the mid-point height �(y) = �(0, y). The corresponding one-dimensional Hamiltonian has
the following form [7, 8]:

H [�(y)] =
∫

dy H =
∫

dy
�

α

[
�(y)

(
d�

dy

)2

+ (�2 − α2)�(y)

]
(1.1)

where � is the α–β surface tension and the planar substrate contact angle � is defined via the
Young equation. We consider a very open wedge and thus we have put α = cosϕ ≈ cot ϕ.

Figure 1. The wedge geometry and the
fluctuating α–β interface.
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Actually the factor �2 − α2 in equation (1.1) measures the dimensionless deviation from the
filling temperature because �(Tϕ) = α. The above one-dimensional Hamiltonian can be
further simplified by introducing the rescaled variables Y and L:

αy = �−1/2((�/α)2 − 1)−3/4Y � = �−1/2((�/α)2 − 1)−1/4L. (1.2)

Then the Hamiltonian becomes free from any parameters and has the form

H [L(Y )] =
∫

dY L[(L′(Y ))2 + 1]. (1.3)

This scaling property leads straightforwardly to the critical behaviour of the mean mid-height
〈�〉 ∼ (�/α − 1)−1/4 and the correlation length ξy ∼ (�/α − 1)−3/4 [7].

2. The propagator

To solve the model described by the Hamiltonian in equation (1.3) one introduces the
propagator [9]

V (L2, L1, Y2, Y1) =
∫

DL exp(−H [L])|L(Y2)=L2
L(Y1)=L1

(2.1)

where the measure DL is given by DL = ∏
Y L1/2(Y ) dL (Y ). Actually it is the form of this

measure which prohibits one from deriving the equation for the propagator in an unambiguous
way. The problem encountered here is similar to the well known Itô–Stratonovich dilemma in
the theory of stochastic processes [10].

For Y2 − Y1 = �Y � 1 the discretization schemes applied to equation (2.1) can be
parametrized by two parameters a and b (a, b ∈ [0, 1]). These two parameters reflect the
freedom (or rather ambiguity) in: (i) defining the measure because of the factor L1/2(Y )

present in the measure
∏

Y L1/2(Y ) dL (Y ), a; and (ii) defining the discrete analogue of the
term L(Y ) (dL (Y )/dY )2 present in the Hamiltonian, b. In each of these cases the factor L1/2

can be split into two factors Lc/2 and L(1−c)/2, c = a, b, attached to the left and to the right
end of the segment �Y , respectively. In this way one obtains

V (L2, L1,�Y) = L
(1−a)/2
2 L

a/2
1 exp

{
−[(1 − b)L2 + bL1]

(L2 − L1)
2

�Y
− L2�Y

}
(2.2)

which leads to the following equation for the propagator (the Fokker–Planck equation) in the
limit �Y → 0:
∂V

∂Y
= −L2V +

∂2V

4L2∂L
2
2

− (3b − a)∂V

4L2
2∂L2

+
(15b2 − 6ab − a(2 − a))V

16L3
2

. (2.3)

We see that the form of this equation depends on the choice of parameters a and b. If one
insists that the propagator is symmetric, i.e. invariant upon interchanging L1 and L2, then one
obtains the condition 3b− a = 1, which still leaves the equation for the propagator depending
on one parameter.

The above ambiguity can be avoided by changing the variable in the one-dimensional
Hamiltonian in equation (1). Instead of the variable L one introduces the new order parameter
η ≡ 2L3/2/3 and the Hamiltonian takes the form

H [η(Y )] =
∫

dY

[
(η′(y))2 +

(
3η

2

)2/3
]
. (2.4)

The corresponding propagator is defined as

V(η2, η1, Y2, Y1) =
∫

Dη exp(−H [η])|η(Y2)=η2
η(Y1)=η1

(2.5)
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where Dη = ∏
Y dη (Y ). Now the equation for the propagator is obtained unambiguously:

∂V
∂Y

= ∂2V
4∂η2

2

−
(

3η2

2

)2/3

V. (2.6)

The propagators V(η1, η2, Y ) and V (L1, L2, Y ) are related:

V (L1, L2, Y1, Y2) = (3/2)1/3(η1η2)
1/6V(η1, η2, Y1, Y2). (2.7)

It is interesting to note that equation (2.3) for the ‘symmetrical choice’ a = b = 1/2 is not
equivalent to equation (2.6).

3. The boundary condition

The equation for the propagator must be supplemented by appropriate boundary conditions at
η = 0, i.e. at L = 0. In this letter we follow [9] and impose the following condition:

∂V(η2, η1, Y2, Y1)

∂η2

∣∣∣∣
η2=0

= aV(0, η1, Y2, Y1). (3.1)

This condition should not depend on � − α. Thus for the non-rescaled variable η̄ defined as
η̄ = (�/α − 1)−3/8η one must have

∂η̄2 ln V|η̄2 = ā = const. (3.2)

Therefore the parameter a = ā(�/α − 1)−3/8 tends to ∞ upon approaching the filling
temperature, from which one concludes that the correct boundary condition has the Dirichlet
form:

V(0, η1, Y2, Y1) = 0. (3.3)

In order to find the propagator explicitly we express it by eigenvaluesEn and eigenfunctions
ψn of the equation

[−En + (3η/2)2/3 − ∂2
η/4]ψn(η) = 0 (3.4)

with boundary condition ψn(0) = 0. Then the propagator is written in the form

V(η2, η1, Y2, Y1) =
∑
n

ψn(η2)ψn(η1)e
−En(Y2−Y1). (3.5)

The first four eigenvalues are E0 ≈ 1.751 37, E1 ≈ 2.652 89, E2 ≈ 3.320 79, E3 ≈ 3.875 86
and the corresponding eigenfunctions obtained numerically [11] are shown in figure 2.

To calculate physical quantities one needs the multipoint probability distribution
p(Y0, η0, . . . , Yk, ηk). This distribution can be expressed as the product of propagators

p(Y0, η0, . . . , Yk, ηk) =
∏k

i=−1 V(ηi+1, ηi, Yi+1, Yi)

V(ηk+1, η−1, Yk+1, Y−1)
(3.6)

where (Y−1, η−1) and (Yk+1, ηk+1) are coordinates of the boundary conditions.

4. Conclusions

We have pointed out that, although the transfer-matrix method seems to be applicable
rather straightforwardly to the effective one-dimensional Hamiltonian describing the critical
fluctuations at the filling transition, one is still left with the problem of the non-unique way of
discretizing this problem. Thus the analogue of the Itô–Stratonovich dilemma appears in the
transfer-matrix analysis of the critical interfacial fluctuations in the presence of a non-planar
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Figure 2. The eigenfunctions ψ0, ψ1, ψ2 and ψ3.

substrate. In order to avoid this problem we propose to find, first, the right order parameter
and the corresponding space of functional integration. We show how such a choice leads to
the disappearance of the ambiguity upon the discretization of the problem.

The above considerations show that, in order to get a hint about the right form of the
Fokker–Planck equation, one should go back to the complete two-dimensional description
and from there, deduce the correct values of a and b. Equation (2.3) becomes equivalent to
equation (2.6) if the term εV/4η2

2 is added to the rhs of equation (2.3), where the coefficient ε
depends on the parameters a and b. For a ‘symmetrical choice’ ε = −1/36. We suspect that
ε is, in fact, non-zero and finding its right value remains the challenge.
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